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ABSTRACT

A synthetic strategy featuring efficient ruthenium-catalyzed asymmetric hydrogenation of racemic R-aryloxy cyclic ketone via dynamic kinetic
resolution and palladium-catalyzed intramolecular reductive Heck cyclization has been developed for the asymmetric total synthesis of
(�)-galanthamine (20.1%, 12 steps) and (�)-lycoramine (40.2%, 10 steps)

The galanthamine-type alkaloids including (�)-ga-
lanthamine (1) and (�)-lycoramine (2) (Figure 1), isolated
from the bulbs of different species of the Amaryllidaceae
family, have attractedmuchattentionof synthetic chemists
because of their intriguing structures and potent biological
activities.1 (�)-Galanthamine (1) is a selective, reversible,
and competitive acetylcholinesterase inhibitor and has
been used in the early treatment of Alzheimer’s disease.2

(�)-Lycoramine (2) has a similar, albeit less potent, activ-
ity as an acetylcholinesterase inhibitor and an allosteric
potentiating ligand.3 Because of the limited supplies of
these alkaloids fromnatural sources, a number of synthetic
strategies have been developed for the syntheses of ga-
lanthamine and its analogues since Barton and Kirby
initiatively reported the total synthesis of galanthamine

in the early 1960s.4 However, most of the reported syn-
thetic strategies provided the alkaloids in racemic form.5

Figure 1. Representative galanthamine-type alkaloids and their
core structure.
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Galanthamine-type alkaloids feature a unique tricyclic
benzofuran core structure with a chiral arylated-quatern-
ary carbon center, and the enantioselective construction of
this sterically congested quaternary carbon center is a
major challenge in the synthesis of these alkaloids. Thus,
a number of strategies have been developed to construct
the chiral arylated-quaternary carbon center for the synth-
esis of galanthamine-type alkaloids by means of phenolic
oxidative coupling,6 intramolecular Heck reaction,7

Claisen rearrangement,8 Brich�Cope sequence,9 phenolic
oxidative coupling and crystallization-induced chiral con-
version,10 and organocatalyzed Michael addition.11 How-
ever, although being one of the most promising methods
for the synthesis of chiral compounds, the asymmetric
catalysis has been rarely used for the enentioselective
synthesis of galanthamine-type alkaloids, and the reported
catalytic asymmetric syntheses of (�)-galanthamine (1)
and (�)-lycoramine (2) were not very efficient.7,11

During the study on the catalytic asymmetric synthesis
of chiral natural products, we found that the intramo-
lecular reductive Heck reaction is a convenient access to
the construction of tricyclic dihydrobenzofuran ringwith a
quaternary stereocenter.12 This intramolecular reductive
Heck reaction combining with the asymmetric hydrogena-
tion of R-aryloxy cyclic ketone via a dynamic kinetic
resolution (DKR), recently developed in our laboratory,13

provides a highly efficient strategy for the enantioselective
synthesis of (�)-galanthamine (1, 20.1%, 12 steps) and
(�)-lycoramine (2, 40.2%, 10 steps).
Our strategy is outlined in Scheme 1. We expected that

the target molecules 1 and 2 could be synthesized from
ester (S,R)-3 via formation of the seven-memberedaza ring
through several steps including amidation and Pictet-
Spengler cyclization. The ester (S,R)-3 could be obtained

from R,β-unsaturated ester (S)-4 containing an R-haloge-
nated phenoxyl group via an intramolecular reductive
Heck cyclization. The R,β-unsaturated ester (S)-4 could
be easily prepared fromR-aryloxy cyclohexanone (S)-5 via
a Horner�Wadsworth�Emmons reaction, and the opti-
cally pure (S)-5 could be obtained by ruthenium-catalyzed
asymmetric hydrogenation of rac-5 via DKR13 followed
by a Swern oxidation.

Since Larock14 and Trost7a,c had reported that the
intramolecular Heck reaction of aryl allyl ethers often
suffers from a competitive palladium-catalyzed ionization
of the aryloxy group, producing a phenol, the prevention
of this unwanted side reaction inevitably became one of the

Scheme 1. Synthetic Strategy for (�)-Galanthamine (1) and
(�)-Lycoramine (2)

Table 1. Palladium-Catalyzed Cyclization of rac-4 to rac-3a

entry X [Pd]

reductive

reagent

(equiv)

temp

(�C)
time

(h)

yieldb

(%)

1 Br Pd(OAc)2 HCO2H (2.0)/

Et3N (2.5)

80 10 20

2 Br Pd(OAc)2 HCO2H (2.0)/

Et3N (2.5)

100 10 40

3 Br Pd(OAc)2 HCO2H (2.0)/

Et3N (2.5)

120 10 32

4 Br Pd(OAc)2 HCO2Na (2.0) 100 10 43

5 Br Pd2(dba)3

3CHCl3

HCO2Na (2.0) 80 3 49

6c I Pd2(dba)3

3CHCl3

HCO2Na (2.0) 60 3 95

aReaction conditions: 10 mmol of rac-4, 5 mol % of Pd catalyst,
10 mol % of PPh3, DMF as solvent. b Isolated yield. cWithout PPh3.

(6) (a) Tomioka, K.; Shimizu, K.; Yamada, S.; Koga, K. Hetero-
cycles 1977, 6, 1752. (b) Shimizu, K.; Tomioka, K.; Yamada, S.; Koga,
K.Heterocycles 1977, 8, 277. (c) Kodama, S.; Hamashima, Y.; Nishide,
K.; Node, M. Angew. Chem., Int. Ed. 2004, 43, 2659. (d) Node, M.;
Kodama, S.; Hamashima, Y.; Katoh, T.; Nishide, K.; Kajimoto, T.
Chem. Pharm. Bull. 2006, 54, 1662.

(7) (a) Trost, B.M.; Toste, F. D. J. Am. Chem. Soc. 2000, 122, 11262.
(b) Trost, B. M.; Tang, W. Angew. Chem., Int. Ed. 2002, 41, 2759. (c)
Trost, B.M.; Tang,W.; Toste, F.D. J. Am.Chem. Soc. 2005, 127, 14785.
Catalytic asymmetric synthesis of (�)-galanthamine (10 steps, 8%
overall yield).

(8) (a) Tanimoto, H.; Kato, T.; Chida, N.Tetrahedron Lett. 2007, 48,
6267. (b) Kato, T.; Tanimoto, H.; Yamada, H.; Chida, N.Heterocycles
2010, 82, 563.

(9) Malachowski, W. P.; Paul, T.; Phounsavath, S. J. Org. Chem.
2007, 72, 6792.

(10) Magnus, P.; Sane, N.; Fauber, B. P.; Lynch, V. J. Am. Chem.
Soc. 2009, 131, 16045.

(11) Chen, P.; Bao, X.; Zhang, L.-F.; Ding, M.; Han, X.-J.; Li, J.;
Zhang, G.-B.; Tu, Y.-Q.; Fan, C.-A. Angew. Chem., Int. Ed. 2011, 50,
8186. Catalytic asymmetric synthesis of (�)-galanthamine (16 steps,
2.8% overall yield) and (�)-lycoramine (14 steps, 8.1% overall yield).

(12) Reviews for reductive Heck reaction, see: (a) Oestreich, M., Ed.
The Mizoroki�-Heck Reaction; Wiley: Chichester, 2009. (b) Link, J. T.;
Overman, L. E. Metal-catalyzed Cross Coupling Reaction; Diederick, F.,
Stang, P. J., Eds.; Wiley-VCH: Weinheim, 1998, Chapter 6. (c) Tsuji, J.
Palladium Reagent and Catalysts. Innovation in Organic Synthesis; John
Wiley: New York, 1995. Selected papers for intramolecular reductive Heck
reaction for the construction of dihydrobenzofuran ring: (d) Trost, B. M.;
Thiel, O. R.; Tsui, H.-C. J. Am. Chem. Soc. 2003, 125, 13155. (e) Trost,
B. M.; Thiel, O. R.; Tsui, H.-C. J. Am. Chem. Soc. 2002, 124, 11616.

(13) Bai, W.-J.; Xie, J.-H.; Li, Y.-L.; Liu, S.; Zhou, Q.-L.Adv. Synth.
Catal. 2010, 352, 81.



2716 Org. Lett., Vol. 14, No. 11, 2012

major challenges of our synthetic strategy. We first evalu-
ate the intramolecular reductiveHeck cyclization of rac-4a
(X = Br), which was prepared in good yield (67%, two
steps) from 2-bromo-6-methoxyphenol and 7-bromo-1,4-
dioxaspiro[4.5]decan-8-one15 (see the Supporting Infor-
mation).When the reaction was performed in the presence
of 5 mol % of Pd(OAc)2, 10 mol % of PPh3, 2.0 equiv of
HCO2H, and 2.5 equiv of Et3N at 80 �C in DMF for 10 h,
rac-4awas cyclized to rac-3 in 20%yield accompanied by a
significant amount of ionization product, 2-bromo-6-
methoxyphenol (Table 1, entry 1). Increasing the reaction
temperature led to a higher yield of rac-3, but still lower
than 40% (entries 2 and 3). Use of HCO2Na (2 equiv),
instead of HCO2H/Et3N, as a reductive reagent resulted in
a slight improvement of yield to 49% (entry 5). Fortu-
nately, when the iodinated R,β-unsaturated ester rac-4b
(X = I) was subjected to the reaction the ionization of
aryloxy group was strongly suppressed and the desired
reductive Heck cyclization product rac-3 was obtained in
95% yield under milder conditions (60 �C, 3 h) (entry 6).16

This palladium-catalyzed intramolecular reductive Heck

cyclization is also highly efficient for the cyclization
of rac-7 and rac-8, the analogues of rac-4 derived from
R-(2-iodophenoxy)cycloalkanones with five or seven-
membered ring to the corresponding benzofurans rac-9
(93%) and rac-10 (84%) in high yields (Scheme 2).
Naturally, after the establishment of a highly efficient

intramolecular reductive Heck cyclization to create the
tricyclic benzofuran core structure of galanthamine-type
alkaloids, we then tried the synthesis of (S,R)-3 in optically
pure form. To address this topic, the enantioselective
synthesis of the optically pure R-aryloxy cyclohexanone
(S)-5b is the key. Recently, we developed a highly efficient
ruthenium-catalyzed asymmetric hydrogenation of race-
mic R-aryloxy cyclohexanones via DKR, producing chiral
β-aryloxy cycloalkanols in excellent enantioselectivity.13

This provides an method for us to try the synthesis of
the optically pure R-aryloxy cyclohexanone (S)-5b with
a bulky ethylene ketal group at the 4-position of the
cyclohexane ring. By using chiral ruthenium catalyst

RuCl2-(S)-SDP/(R,R)-DPEN,17 rac-5b (obtained from the
reaction of 2-iodo-6-methoxyphenol with 7-bromo-1,4-
dioxaspiro[4.5]decan-8-one in 75%yield, see the Supporting
Information) was hydrogenated to chiral β-aryloxy cyclo-
hexanol (S,R)-6 in high yield (99%) with excellent enan-
tioselectivity (97% ee) and cis-selectivity (cis/trans>99:1)
(Scheme 3), indicating that the ethylene ketal group in the
substrate has a negligible effect to the reaction. The β-
aryloxy cyclohexanol (S,R)-6 was then converted into R-
aryloxy cyclohexanone (S)-5b in 95% yield without loss of
its optical purity by Swern oxidation. Subsequently, a con-
densation of (S)-5b with ethyl 2-(dimethoxy-phosphoryl)

acetate by a Horner-Wadsworth-Emmons reaction gave
R,β-unsaturated esters (S)-4b in 96% yield with (E)-con-
figuration as the major isomer (Z/E ≈ 1:5). The Z,E-
mixture of (S)-4b was then submitted to the palladium-
catalyzed intramolecular reductive Heck cyclization to
give (S,R)-3 in 95% yield.
With ester (S,R)-3 in hand, we then focused our atten-

tion on its conversion into (�)-galanthamine (1) and (�)-
lycoramine (2). As shown in Scheme 4, the ester (S,R)-3
was hydrolyzed with sodium hydroxide in methanol/
H2O, followed by activation with ethyl chloroformate
(ClCO2Et) in the presence of triethylamine at �15 �C
and amidation with aqueous methylamine (MeNH2) to
offer amide (S,R)-11 in 83% yield (2 steps). Subsequent
Pictet-Spengler cyclization of (S,R)-11with paraformalde-
hyde furnished the tetracyclic intermediate (S,R)-12
with a seven-membered azepine ring in 89% yield.18 The
intermediate (S,R)-12 was then subjected to a selective

Scheme 2. Palladium-Catalyzed Cyclization of rac-7 and rac-8

Scheme 3. Enantioselective Synthesis of (S,R)-3 (DMSO =
Dimethyl Sulfoxide)
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reduction of the ketone group to the hydroxyl using
K-Selectride and a further reduction of the amide motif
to amine with triethoxysilane ((EtO)3SiH) in the presence
of Zn(OAc)2 as a catalyst19 to give (�)-lycoramine (2) in
84.6% yield (2 steps).20 The NMR spectroscopic data
and the optical rotation ([R]D

20 = �102 (c 0.35, EtOH),
lit. [R]D

20 = �100 (c 0.35, EtOH),9 [R]D
20 = �92.7 (c 0.35,

EtOH)11) of our synthetic (�)-lycoramine are identical to
those reported in the previous synthesis. Thus, enantiose-
lective synthesis of (�)-lycoramine was achieved in 40.2%
overall yield over 10 steps from the commercially available
2-iodo-6-methoxyphenol via a ruthenium-catalyzed asym-
metric hydrogenation and a palladium-catalyzed intra-
molecular reductive Heck cyclization as the key steps.

The enantioselective synthesis of (�)-galanthamine (1) is
outlined in Scheme 5.Using the procedure of Saegusa�Ito
oxidation,21 the tetracyclic intermediate (S,R)-12was trea-
ted with TBSOTf, followed by palladium-mediated oxida-
tion to provide the desired enone (S,S)-14 in 51% yield
(two steps).22 The (S,S)-14 was then reduced sequentially
with K-Selectride and (EtO)3SiH/Zn(OAc)2 to yield
(�)-galanthamine (1) in 83% yield. The data of NMR
spectroscopy and optical rotation of our synthetic
(�)-galanthamine (1) are identical to those reported
in the literature ([R]D20 = �119.5 (c 0.30, EtOH), lit.6c

[R]D
20 = �121.7 (c 0.30, EtOH)). The enantioselective

synthesis of (�)-galanthamine (1) was thus accomplished
in 12 steps with 20.1% overall yield.

In conclusion, we have developed highly efficient en-
antioselective syntheses of (�)-galanthamine (1) and (�)-
lycoramine (2) based on a ruthenium-catalyzed asymmetric
hydrogenation and a palladium-catalyzed intramolec-
ular reductive Heck cyclization as the key steps. The (�)-
galanthamine (1) was synthesized in twelve steps with
20.1%overall yield and the (�)-lycoramine (2) was synthe-
sized in ten steps with 40.2% overall yield from commer-
cially available starting materials. These high yielding
syntheses of (�)-galanthamine and (�)-lycoramine have
good reproducibility. These results demonstrated that this
catalytic enantioselective synthetic strategy is efficient for
the asymmetric construction of the polycyclic benzofuran
ring systems bearing an all-carbon quaternary center and
has high potential for application to the syntheses of other
galanthamine-type,morphine-type, and lunarine-type bio-
logically significant alkaloids.
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Scheme 4. Enantioselective Synthesis of (�)-Lycoramine (2)
(K-Selectride = Potassium Tri-sec-butyl Borohydride)

Scheme 5. Enantioselective Synthesis of (�)-Galanthamine (1)
(TBSOTf = tert-Butyldimethylsilyl
Trifluoromethanesulfonate)
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